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Abstract. The low-energy electronic structure of icosahedral fullerenes is studied within the field-theory
model. In the field model, the pentagonal rings in the fullerene are simulated by two kinds of gauge fields.
The first one, non-abelian field, follows from so-called K spin rotation invariance for the spinor field while
the second one describes the elastic flow due to pentagonal apical disclinations. For fullerene molecule,
these fluxes are taken into account by introducing an effective field due to magnetic monopole placed at
the center of a sphere. Additionally, the spherical geometry of the fullerene is incorporated via the spin
connection term. The exact analytical solution of the problem (both for the eigenfunctions and the energy
spectrum) is found.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals

1 Introduction

The electronic structure and elementary excitations of
fullerene molecules have been of steady interest since the
discovery of the first so-called buckminsterfullerene C60 [1]
because the knowledge of the electronic structure gives an
important information about the electric and photo con-
ductivity, magnetic behavior, etc. All these characteristics
were found to be rather unique in fullerene molecules (see,
e.g., review [2]), which can be effectively used in some
practical applications in devices based on fullerenes.

There is a number of different theories to study this
problem, which can be roughly divided into three general
groups. The first one includes empirical methods like the
free-electron gas [3], and tight-binding [4–7] calculations.
The second one uses ab initio quantum chemistry calcula-
tions [8]. The third group considers the continuum models
within the effective-mass description [9–11].

While the continuum description is limited to the elec-
tronic states close to the Fermi level, it has some interest-
ing attractive features. First of all it gives a possibility to
study large fullerenes where the numerical analysis is a
rather difficult task. Second, it reveals the long-distance
physics which is of importance in various carbon nanopar-
ticles. Finally, the continuum description allows to eluci-
date ”true” topological effects like the appearance of the
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Aharonov-Bohm phase and anomalous Landau levels due
to disclinations.

In this paper, we formulate a continuum model to
study low-energy electron states in icosahedral fullerenes.
The model is a variant of the effective field theory on
a sphere describing Dirac wavefunctions interacting with
two types of gauge fluxes. One of the fluxes is due to so-
called K spin rotation invariance (see [12] for details) and
the second one comes from the local SO(2) invariance of
the two-dimensional elastic Lagrangian in the presence of
disclinations [13]. Actually, the second flux describes the
elastic flow through a surface due to a disclination and
has a topological origin (its circulation is determined by
the Frank index, the topological characteristic of the de-
fect). For this reason, this flux exists even within the so-
called “inextensional” limit (which is usually adjusted to
fullerene molecule [14]). Notice that the topological origin
the elastic flux results in appearance of the disclination-
induced Aharonov-Bohm-like phase (see [15]).

It should be mentioned that the first continuum model
for the description of fullerene molecule was presented in
two papers [9,10]. A different variant of the continuum
model for fullerene was suggested in [11]. The first model
neglected the topological origin of the disclination defects
while the second model missed the K spin rotation invari-
ance. However, in both papers the non-trivial zero-mode
electronic states are considered. In this paper we found an
exact analytical solution of the problem at low energies.
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Fig. 1. A disclination in elastic membrane (right) and the image of the membrane (left).

2 General formalism

Let us start from the standard formalism based on the
effective-mass theory proposed in [16] to study the screen-
ing of a single intercalant within a graphite host. A
graphite host is considered as a single graphite plane
(graphene). Actually, the effective-mass expansion is
equivalent to the k · p expansion of the graphite energy
bands about the K point in the Brillouin zone when the
intercalant potential is zero. In fact, there are two degen-
erate Bloch eigenstates at K, so that the microscopic wave
function can be approximated by

Ψ(k, r) = f1(k′)eik′rΨS
1 (K, r)+f2(k′)eik′rΨS

2 (K, r) (1)

where k = K + k′. Keeping terms of order k′ in the
Schrödinger equation one can obtain the secular equation
for functions f1,2(k′) and after diagonalization one finally
gets the two-dimensional Dirac equation (see [16] for de-
tails)

−iσµ∂µψ(r) = Eψ(r) (2)

where σµ are the conventional Pauli matrices (µ = 1, 2),
the energy E is accounted from the Fermi energy, the
Fermi velocity VF is taken to be one, and the two-
component wave function ψ represents two graphite sub-
lattices (A and B). As was mentioned in [16] the essence
of the k ·p approximation is to replace the graphite bands
by conical dispersions at the Fermi energy. In addition,
one has to take into account two independent wave vec-
tors (K+ = K and K− = −K) in the carbon lattice
which give the same conical dispersion. Therefore, the
states |K±A〉 and |K±B〉 can be chosen as the full basis
set [12].

For our purpose, to take into account both the spher-
ical geometry of a fullerene molecule and disclinations on
its surface we have to modify the model (2) by introducing
three additional fields.

2.1 The compensating fields

As a first step, let us consider a single disclination in a
graphene sheet. To introduce the fivefold in the hexagonal
lattice one has to cut the sector 2π/6 and glue the opposite
sides (OB and OB′ in Fig. 1). Notice that this is a typ-
ical cut-and-glue procedure to incorporate a disclination
in an elastic plane. There exist several continuum theories
for the description of disclinations in flexible membranes
(see [13,17,18]) which allow to formulate similar von Kar-
man equations. In the ”inextensional” limit (free to bend,
impossible to stretch), the exact solution for an isolated
positive disclination was found in [17]. It was shown that
the elastic membrane becomes buckled and takes a conical
form (see Fig. 1). For our purpose, the most appropriate
is the gauge theory of disclinations on fluctuating elastic
surfaces formulated in [13]. Indeed, this is the most conve-
nient theory to take into account the topological origin of
the disclination defect. The elastic flux due to pentagonal
apical disclination represented by abelian gauge field W
is given by (see [11,15])

∮
Wµdx

µ =
2π
6
. (3)

As is seen, the elastic flux for pentagonal defect is exactly
1/6. It was shown in [15] that the electronic eigenfunction
acquires the additional Aharonov-Bohm-like phase due to
nontrivial topology of elastic surface with a disclination
vortex. In our case, this phase will appear both in the
Bloch (1) and the Dirac (2) wavefunctions.

To exclude the discontinuous boundary conditions for
spinor fields on the sector sides (lines OB and OB′ in
Fig. 1) let us introduce two additional fields. First, con-
structing a boundary condition for the spinor components
on the line OB ≡ OB′ one has to take into account the
exchange between A and B sublattices which takes place
for the sector angle π/3. This can be done by using an
appropriate boundary condition for the K spin part in the



D.V. Kolesnikov and V.A. Osipov: The continuum model for electronic states of icosahedral fullerenes 467

form (see [12])

ψ(ϕ+ 2π) = −Tψ(ϕ), T = iτ2 = exp
(
i
π

2
τ2

)
(4)

where the Pauli matrix τ2 acts on the K part of the spinor
components, and ϕ is the polar coordinate on the mem-
brane (0 ≤ ϕ < 2π). One can introduce the non-Abelian
gauge field a to eliminate the exponential factor. In this
case, the circulation of the field a is written as [12]

∮
aµdx

µ = τ2
2π
4
. (5)

As is seen, this field adds ±1/4 to the total flux. It should
be mentioned that the circulation of the gauge field a is
governed by topology of the lattice and does not depend
upon geometry of the structure. Thus these operators and
fluxes can be obtained solely from the lattice structure.

The last field to be introduced is the frame rota-
tion field Q which is equivalent to the spin connection
(see [12]). This field (analog to the metrical connection
coefficients) rotates the frame by the angle 2π/6, and its
circulation along the contour A′A is determined by the
following condition:

∮
Qµdx

µ = −σ3
π

6
. (6)

Notice that the spin connection does not contribute to the
total flux.

2.2 The covariant description and the Dirac equation
on the curved surface

So far we considered the problem on the plane by using
the discontinuous planar coordinates (with the borders
of the sector OB and OB′). Instead, one can also use the
continuous coordinates on the Riemannian surface r(r, ϕ),
0 ≤ ϕ < 2π (see Fig. 1). To incorporate fermions on the
curved background we need a set of orthonormal frames
{eα} which yield the same metric, gµν , related to each
other by the local SO(2) rotation,

eα → e′α = Λβ
αeβ , Λβ

α ∈ SO(2).

It then follows that gµν = eα
µe

β
νδαβ where eµ

α is the
zweibein, with the orthonormal frame indices being α, β =
{1, 2}, and coordinate indices µ, ν = {1, 2}. As usual, to
ensure that physical observables are independent of a par-
ticular choice of the zweibein fields, a local so(2)-valued
gauge field ωµ must be introduced. The gauge field of the
local Lorentz group is known as the spin connection. For
the theory to be self-consistent, the zweibein fields must
be chosen to be covariantly constant [20],

Dµe
α
ν = ∂µe

α
ν − Γ λ

µνe
α
λ + (ωµ)α

βe
β
ν = 0,

which determines the spin connection coefficients explic-
itly

(ωµ)αβ = eα
νDµe

βν . (7)

Finally, the Dirac equation (2) on a surface Σ in presence
of the U(1) external gauge field Wµ and the gauge field
aµ is written as

iγαe µ
α (∇µ − iaµ − iWµ)ψ = Eψ, (8)

where ∇µ = ∂µ +Ωµ with

Ωµ =
1
8
ωα β

µ [γα, γβ ] (9)

being the spin connection term in the spinor representa-
tion. Notice that Ωµ = −iQµ which justifies the above-
mentioned relation between the frame rotation field and
the spin connection. The spinor in (8) has the form ψ =
(FK

A FK
B F

K−
A F

K−
B )T where F (r) are envelope functions,

γα = −I σα = −
(
σα 0
0 σα

)
,

∮
aµdx

µ =
2π
4
τ2I =

2π
4

(
0 −i I
i I 0

)
. (10)

The matrix τ2 acting in K-spin space appears in (8) only
through aµ. Therefore (8) can be easily diagonalized and
we arrive at the two-component Dirac equations in the
form

−iσαe µ
α (∇µ − iak

µ − iWµ)ψk = Eψk. (11)

As is seen, the coupled pair of equations (8) is reduced to
the decoupled one describing “K-spin up” (K↑) and “K-
spin down” (K↓) states. The field ak

µ is determined by a
condition ∮

ak
µdx

µ = ±2π
4
,

with the sign plus (minus) taken for k = K↑ (k = K↓),
respectively. Notice that after diagonalization the four-
component spinor ψ is found to be decomposed into “up-
per” and “lower” doublet components, ψK↑

and ψK↓
, each

of them transforms via SU(2).

2.3 The continuum model for the icosahedral fullerene

According to the Euler’s theorem, the fullerene molecule
consists of exactly twelve disclinations. Generally, it is dif-
ficult to take into account properly all the disclinations.
There are two ways to simplify the problem. First, one can
consider a situation near a single defect (similar to [11])
taking into account that each defect in the fullerene can
be simulated by two fluxes: K spin flux (5) and the elas-
tic flux (3). In the case of sphere, however, the most ap-
propriate approximation is to introduce the effective field
replacing the fields of twelve disclinations by the field of
the magnetic ’t Hooft-Polyakov monopole with a constant
flux density and the half-integer charge A [10].

The total flux of the monopole 4πA is equal to the
sum of fluxes from all the disclinations. The procedure of
summing up non-abelian fictitious fluxes from apical de-
fects placed at different points of the graphite cones was
presented in [12] (so-called “n − m” combination rule).
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Fig. 2. The integration path on the sphere. The path shown
at the center encircles a few fivefolds. The “total” path of the
integration, encircling all twelve pentagons, includes two con-
tours around the poles: negatively directed for the north pole
(shown) and positively directed for the south pole (not shown).

Namely, for the field a a linear integral circulating any
even number of defects on the lattice is determined by
τ3 (Nπ/2− (2π/3)[(n−m) (mod 3)]), where N is a num-
ber of defects, n and m are numbers of steps in positive
and negative directions, respectively (see [12]). The direc-
tions rotated by 2π/3 are considered to be identical. This
gives a natural (n,m) classification of two-pentagon lat-
tices: those for which n ≡ m (mod 3), and those for which
n �= m (mod 3). This approach is suitable for the case of
a sphere.

As is shown below, the eigenfunctions of the low-
energy levels oscillate not too fast with a distance, there-
fore the effective “monopole-like” approximation is valid
for small quantum numbers (and near the Fermi energy).
So, one can introduce the continuous field created by the
’t Hooft-Polyakov monopole placed at the center of the
sphere. In this case, the contour of integration is repre-
sented by two circles around the poles of the sphere as
shown in Figure 2. Notice that for fullerenes with the full
icosahedral symmetry (Ih) the combined flux turns out to
be a sum of fluxes due to any pair of defects. Thus, the
combined flux does not depend upon the arrangement of
pentagons because any corresponding fragment of the lat-
tice turns out to be of the above-mentioned class (1, 1). In
other words, in icosahedral fullerenes (n−m) (mod 3) =
0 due to the mirror symmetry of the lattice. Finally, the
continuous fields take the form

ak
θ = 0, ak

ϕ = ±3
2

cos θ, Wθ = 0,Wϕ = − cos θ.

It should be noted that for the Dirac field in the external
potential provided by a monopole, the effective “charge”A
involves the “isospin” matrix τ ′ (see [21]). This matrix can
be also diagonalized in the Dirac equation thus giving the
additional sign ± to the whole charge. What is important,
the coordinate behavior of this field is the same as for the
spin connection field (cf. [22,10]). This fact allows us to
find the exact analytical solution of the problem. Another
significant fact is the presence of “isospin” matrix in the
momentum operator. Similarly to [10]

Jz = −i(∇ϕ − iAτ ′2 cos θ) +
σz

2
cos θ +A cos θτ ′2 (12)

and for half-integer A this operator takes integer eigen-
values j = 0,±1,±2, ....

3 The electronic states of the fullerene

In accordance with the results of the previous section, the
total “charge” is written as A = ±(ak

ϕ + Wϕ)/ cos θ =
±1/2,±5/2. Therefore, the Dirac operator in (8) takes
the following form:

D̂ = −iσx

(
∂θ +

cot θ
2

)
− i

σy

sin θ
(∂ϕ − iA cos θ) .

The substitution(
ψA

ψB

)
=

∑
j

eijϕ

√
2π

(
uj(θ)
vj(θ)

)
, j = 0,±1,±2, . . .

leads to the equations for uj and vj

−i
(
∂θ +

[
1
2
−A

]
cot θ +

j

sin θ

)
vj(θ) = Euj(θ),

−i
(
∂θ +

[
1
2

+A

]
cot θ − j

sin θ

)
uj(θ) = Evj(θ). (13)

The square of the Dirac operator reads

D̂2 = −
[
σx

(
∂θ +

cot θ
2

)
+ i

σy

sin θ
(j −A cos θ)

]2

= − 1
sin θ

∂θ sin θ∂θ +
1
4

+
1
4 + j2 + σzA

sin2 θ

− cot θ
sin θ

(σzj + 2jA) +A2 cot2 θ. (14)

Let us write the equation D̂2ψ = E2ψ by using the ap-
propriate substitution x = cos θ. From (14) one obtains

[
∂x(1 − x2)∂x − (j −Ax)2 − jσzx+ 1

4 + σzA

1 − x2

]

×
(
uj(x)
vj(x)

)
= −(E2 − 1

4
)
(
uj(x)
vj(x)

)
. (15)

Taking into account the asymptotic behavior of the spinor
functions, one can use the substitution(

uj

vj

)
=

(
(1 − x)α(1 + x)β ũj(x)
(1 − x)γ(1 + x)δ ṽj(x)

)
,

where

α =
1
2

∣∣∣∣j −A− 1
2

∣∣∣∣ , γ =
1
2

∣∣∣∣j −A+
1
2

∣∣∣∣
β =

1
2

∣∣∣∣j +A+
1
2

∣∣∣∣ , δ =
1
2

∣∣∣∣j +A− 1
2

∣∣∣∣ . (16)

Then the equation (15) for the function ũj takes the form

(1 − x2)∂2
xũj + (2(β − α)
− 2(α+ β + 1)x)∂xũj + [−2αβ − α− β

− 1
2
(j2 −A2 +

1
4
−A) + E2 − 1

4
]ũj = 0. (17)
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This is equivalent to the Jacobi equation

(1 − x2)y′′ + (B −A− (A + B + 2)x)y′ + λny = 0,
λn = n(n+ A + B + 1), (18)

with A = 2α, B = 2β, and n being any non-negative
integer. In view of (17) and (18) one gets the quantization
condition

λn = n(n+ 2(α+ β) + 1) = −2αβ − α− β −
−1

2
(j2 −A2 +

1
4
−A) + E2 − 1

4
. (19)

Taking into account (16), one obtains the energy spectrum
in the form E2

n = (n+ α + β + 1/2)2 − A2. When A = 0,
one has α = (1/2)|j − 1/2|, β = (1/2)|j + 1/2| and the
energy spectrum is identical to the one found in [22] for
the Riemann sphere without a monopole.

In a similar manner one can study the equation for
the function ṽ. This gives another energy spectrum E2

n =
(n+ γ + δ + 1

2 )2 − A2. It should be mentioned that both
solutions (for ũ and ṽ) should satisfy (13). This is possible
if the condition α+β = γ+ δ holds true and, on the other
hand, if one of the energies in the equations for u and v
becomes zero.

Let us consider the first case. The possible values of j
are found to be |j| ≥ ||A| + 1/2|. For E > 0 one obtains
the spectrum

E2
n = (n+ |j| + 1/2)2 −A2, (20)

and the eigenfunctions

uj = Cu(1 − x)α(1 + x)βP 2α,2β
n ,

vj = Cv(1 − x)γ(1 + x)δP 2γ,2δ
n , (21)

Pn are the Jacobi polynomials. The unit of energy here is
�VF /R where R is the fullerene radius. One should note
that (20) is not allowed for analysis of zero-mode states. In
particular, the degeneracy of the zero-mode state can not
be calculated using (20). According to (13), the factors Cu

and Cv in (21) are interrelated. Indeed, for j > 0 one has

i[(1 − x2)∂x − 2γ − 2βx]CvP
2γ,2β−1
n =

En(1 + x)CuP
2γ−1,2β
n ,

i[(1 − x2)∂x + 2β − 2γx]CuP
2γ−1,2β
n =

En(1 − x)CvP
2γ,2β−1
n . (22)

Setting x = 1 in the first equation and using the definition

P a,b
n (1) =

Γ (a+ n+ 1)
Γ (a+ 1)n!

, En = ±
√

(2γ + n)(2β + n),

one finally gets for j > 0

Cu = −iCv signEn

(
j+1/2

j+1/2−A
)(

n+ j −A+ 1/2
n+ j +A+ 1/2

)1/2

.

(23)

In general case, for arbitrary signs of E and j, we obtain

Cu = −iCv sign (jEn)
( |j| + 1/2
|j| + 1/2 −A sign j

)sign j

×
(
n+ |j| −A+ 1/2
n+ |j| +A+ 1/2

)1/2

. (24)

In the second case, the possible values of j and n are
determined by |j| ≤ ||A| − 1/2|, n = 0. One gets exactly
one zero-mode at fixed j and positive fixed A

u0 = 0, v0 = Cv(1 − x)γ(1 + x)δ , (25)

where the relation P 2γ,2δ
0 (x) = const. is taken into ac-

count. Accordingly, if A < 0 there exists only one zero-
mode solution u0. Thus, for all possible values of j and
all possible positive values of A there exists exactly six
different zero-mode solutions v0.

It should be noted that both in (21) and in (25) the re-
placement j → −j, A→ −A is equivalent to the exchange
u→ v, v → u (cf. (13)). This means that “isospin up” and
“isospin down” components of the spinor on a sphere turns
out to be physically equivalent up to the redefinition of the
quantum number j and a unitary transformation. There-
fore, one can restrict consideration to either component,
for instance, to “isospin up”.

From (20) and (25) one can calculate the energy spec-
trum. The possible “charges” are A = −1/2, 5/2, so that
the first four levels are (in units of �VF /R) the follow-
ing: E = 0, 1.41, 2.45, 3.46. Their degeneracies are g =
6, 2, 6, 6, respectively. It is interesting to compare these
results with tight-binding calculations. However, two pre-
liminary remarks should be done. First, the continuum
model is correct for the low-lying electronic states. Sec-
ond, the validity of the effective field approximation for
the description of big fullerenes is not clear yet. In fact,
the essence of this approximation is to take into account
the isotropic part of long-range defect fields. Probably, for
bigger fullerenes both the anisotropic part of the long-
range fields and the influence of the short-range fields due
to single disclinations should be properly involved. There-
fore, the exact values of the energy levels do not agree
well with those presented in [4–7]. At the same time, we
can surely verify both the existence of quasi-zero modes
found for spherical fullerenes in [4–7] and their 6-fold de-
generacy. There is also a good qualitative agreement in
observed scaling of the energy gap between the highest
occupied and lowest unoccupied energy levels with the
size of the fullerene.

4 Conclusion

In this paper, we have studied the electronic states of the
icosahedral fullerene within the continuum field-theory ap-
proach. The influence of the disclinations is taken into ac-
count by introducing an effective field due to magnetic
monopole placed at the center of a sphere and having a
total “charge” A. The flux due to monopole is a sum of
two fluxes: (i) the K-spin flux and (ii) the elastic flux due
to nontrivial topology of the surface with a disclination
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(the pricked out point on the surface). An exact analyti-
cal solution of the problem is found and the explicit form
of the zero-energy modes as well as of the energy spectrum
is presented.

It should be noted that our approach differs from pre-
vious studies of fullerene molecules within the continuum
models [9–11,23]. The effective monopole field introduced
in [9] is identical with the K-spin field aµ. Notice that a
similar to [9] monopole field was used in the continuum
model of the spheroidal fullerenes [23]. Neither in [9,10]
nor in [23] the analytical solution was found. The pre-
sented model differs also from [11] where the gauge field
due to K spin was neglected and only one disclination on
a sphere was described.

Introducing the gauge field due to elastic vortex we
obtain some principally new results. First of all, the effec-
tive monopole charge A takes two different values within
the proposed model (−1/2 and 5/2) rather than ±3/2 for
icosahedral fullerenes in [9]. In turn, this finding affects
the energy spectrum which is a combination of spectra for
these two charges. Besides, the eigenfunctions are charac-
terized by different from [10] conditions for the momen-
tum j.

Notice that the more precise description of the
fullerenes requires inclusion of the electron-phonon inter-
action. In the simplest form, the role of this interaction
was considered in [9]. It was shown that the energy lev-
els become shifted and lose a symmetry around the Fermi
level. The similar effect is expected in our model. An in-
teresting open question is the electronic structure of other
(non-Ih) types of spherical fullerenes as well as of non-
spherical (e.g. elliptical) ones. Probably, the introduction
of the monopole-like fields will be also a good approxima-
tion, at least for the low-energy states.

We would like to acknowledge M. Pudlak and S. Sergeenkov
for useful discussions and comments. This work has been sup-
ported by the Russian Foundation for Basic Research under
grant No. 05-02-17721.
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